PyTorch学习率调整策略通过torch.optim.lr_scheduler接口实现。PyTorch提供的学习率调整策略分为三大类,分别是

  • 有序调整:等间隔调整(Step),按需调整学习率(MultiStep),指数衰减调整(Exponential)和 余弦退火CosineAnnealing。
  • 自适应调整:自适应调整学习率 ReduceLROnPlateau。
  • 自定义调整:自定义调整学习率 LambdaLR。

等间隔调整学习率 StepLR

等间隔调整学习率,调整倍数为 gamma 倍,调整间隔为 step_size。间隔单位是step。

torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)
  • step_size(int) 学习率下降间隔数,若为 30,则会在 30、 60、 90…个 step 时,将学习率调整为 lr*gamma
  • gamma(float) 学习率调整倍数,默认为 0.1 倍
  • last_epoch(int) 上一个 epoch 数,这个变量用来指示学习率是否需要调整。当last_epoch 符合设定的间隔时,就会对学习率进行调整。当为-1 时,学习率设置为初始值。

按需调整学习率 MultiStepLR

按设定的间隔调整学习率。

torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)
  • milestones(list) 一个 list,每一个元素代表何时调整学习率, list 元素必须是递增的。如 milestones=[30,80,120]
  • gamma(float) 学习率调整倍数,默认为 0.1 倍

指数衰减调整学习率 ExponentialLR

按指数衰减调整学习率,调整公式: lr=lr∗gamma∗∗epochlr

torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch=-1)

余弦退火调整学习率 CosineAnnealingLR

以余弦函数为周期,并在每个周期最大值时重新设置学习率。以初始学习率为最大学习率,以 2∗Tmax2为周期,在一个周期内先下降,后上升。

torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)
  • T_max(int) 一次学习率周期的迭代次数,即 T_max 个 epoch 之后重新设置学习率。
  • eta_min(float) 最小学习率,即在一个周期中,学习率最小会下降到 eta_min,默认值为 0。

自适应调整学习率 ReduceLROnPlateau

当某指标不再变化(下降或升高),调整学习率,这是非常实用的学习率调整策略。
例如,当验证集的 loss 不再下降时,进行学习率调整;或者监测验证集的 accuracy,当accuracy 不再上升时,则调整学习率。

torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)
  • mode(str) 模式选择,有 min 和 max 两种模式, min 表示当指标不再降低(如监测loss), max 表示当指标不再升高(如监测 accuracy)。
  • factor(float) 学习率调整倍数(等同于其它方法的 gamma),即学习率更新为 lr = lr * factor
  • patience(int) 忍受该指标多少个 step 不变化,当忍无可忍时,调整学习率。
  • verbose(bool) 是否打印学习率信息, print(‘Epoch {:5d}: reducing learning rate of group {} to {:.4e}.’.format(epoch, i, new_lr))
  • threshold_mode(str) 选择判断指标是否达最优的模式,有两种模式, rel 和 abs。
    • 当 threshold_mode == rel,并且 mode == max 时, dynamic_threshold = best * ( 1 +threshold );
    • 当 threshold_mode == rel,并且 mode == min 时, dynamic_threshold = best * ( 1 -threshold );
    • 当 threshold_mode == abs,并且 mode== max 时, dynamic_threshold = best + threshold ;
    • 当 threshold_mode == rel,并且 mode == max 时, dynamic_threshold = best – threshold;
  • threshold(float) 配合 threshold_mode 使用。
  • cooldown(int) “冷却时间“,当调整学习率之后,让学习率调整策略冷静一下,让模型再训练一段时间,再重启监测模式。
    min_lr(float or list) 学习率下限,可为 float,或者 list,当有多个参数组时,可用 list 进行设置。
  • eps(float) 学习率衰减的最小值,当学习率变化小于 eps 时,则不调整学习率。